Подключение стрелочного индикатора со средней точкой. Стрелочный индикатор уровня звука на К157УД2


Сегодня в качестве индикатора уровня выходного сигнала для различной звуковоспроизводящей техники используют целые электронные устройства, что отображают не только уровень сигнала, но и другую полезную информацию. Но раньше для этого использовались стрелочные индикаторы, что представляли собой микроамперметр типа М476 или М4762 . Хотя сделаю оговорку: сегодня некоторые разработчики так же используют стрелочные индикаторы, хотя выглядят они куда интереснее и отличаются не только подсветкой, но и дизайном. Раздобыть старый стрелочный индикатор сейчас, возможно, проблема. Но у меня была парочка М4762 от старого советского усилителя, и я решил их задействовать.


На Рис.1 представлена схема на один канал. Для стерео нам понадобится собрать два таких устройства. Индикатор уровня сигнала собран на одном транзисторе Т1, любом из серии КТ315 . Для увеличения чувствительности использована цепь удвоения напряжения на диодах D1 и D2 из серии Д9. Устройство не содержит дефицитных радиодеталей, поэтому вы можете использовать любые, схожие по параметрам.

Установка показания индикатора, соответствующего номинальному уровню, проводится подстроечным резистором R2. Время интеграции индикатора 150-350 мс, а время обратного хода стрелки, определяемое временем разряда конденсатора С5, составляет 0,5-1,5 с. Конденсатор С4 один для двух устройств. Он используется для сглаживания пульсаций при включении. В принципе от этого конденсатора можно отказаться.


Устройство для двух звуковых каналов собрано на печатной плате размерами 100X43 мм (см. Рис.2) . Тут же монтируются индикаторы. Для удобного доступа к построечным резисторам в плате просверлены отверстия (на рисунке не показаны), чтобы смогла пройти маленькая отвертка для настройки номинального уровня сигнала. Впрочем, только к этому и сводится настройка данного устройства. Возможно, понадобится подобрать резистор R1 в зависимости от силы выходного сигнала вашего устройства. Т.к. с другой стороны платы расположены стрелочные индикаторы, элементы Cl, R1 пришлось монтировать со стороны печатных проводников. Эти детали лучше взять как можно миниатюрнее, например, бескорпусные.
Скачать: Стрелочный индикатор уровня выходного сигнала
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Не секрет, что звучание системы во многом зависит от уровня сигнала на ее участках. Контролируя сигнал на переходных участках схемы, мы можем судить о работе различных функциональных блоков: коэффициенте усиления, вносимых искажениях и т.д. Так же бывают случаи, когда результирующий сигнал просто не возможно услышать. В тех случаях, когда не возможно контролировать сигнал на слух, применяются различного рода индикаторы уровня.
Для наблюдения могут использоваться как стрелочные приборы, так и специальные устройства, обеспечивающие работу «столбцовых» индикаторов. Итак, рассмотрим их работу более подробно.

1 Шкальные индикаторы
1.1 Простейший шкальный индикатор.

Этот вид индикаторов наиболее прост из всех существующих. Шкальный индикатор состоит из стрелочного прибора и делителя. Упрощенная схема индикатора приведена на рис.1 .

В качестве измерителей чаще всего используются микроамперметры с током полного отклонения 100 – 500мкА. Такие приборы рассчитаны на постоянный ток, поэтому для их работы звуковой сигнал необходимо выпрямить диодом. Резистор предназначен для преобразования напряжения в ток. Собственно говоря, прибор измеряет ток, проходящий через резистор. Рассчитывается элементарно, по закону Ома (был такой. Георгий Семеныч Ом) для участка цепи. При этом нужно учесть, что напряжение после диода будет в 2 раза меньше. Марка диода не важна, так что подойдет любой, работающий на частоте больше 20кГц. Итак, расчет: R = 0.5U/I
где: R – сопротивление резистора (Ом)
U - Максимальное измеряемое напряжение (В)
I – ток полного отклонения индикатора (А)

Гораздо удобнее оценивать уровень сигнала, задав ему некоторую инерционность. Т.е. индикатор показывает среднее значение уровня. Этого легко добиться, подключив параллельно прибору электролитический конденсатор, однако следует учесть, что при этом напряжение на приборе увеличится в (корень из 2) раз. Такой индикатор может быть использован для измерения выходной мощности усилителя. Что же делать, если уровня измеряемого сигнала не хватает, что бы «расшевелить» прибор? В этом случае на помощь приходят такие парни, как транзистор и операционный усилитель (далее ОУ).

Если можно измерить ток через резистор, то можно измерить и коллекторный ток транзистора. Для этого нам понадобится сам транзистор и коллекторная нагрузка (тот же самый резистор). Схема шкального индикатора на транзисторе приведена на рис.2


Рис.2

Здесь тоже все просто. Транзистор усиливает сигнал по току, а в остальном все работает так же. Коллекторный ток транзистора должен превышать ток полного отклонения прибора как минимум в 2 раза (так оно спокойнее и для транзистора, и для Вас), т.е. если ток полного отклонения 100 мкА, то коллекторный ток должен быть не менее 200мкА. Собственно говоря, это актуально для миллиамперметров, т.к. через самый слабый транзистор «со свистом» пролетает 50 мА. Теперь смотрим справочник и находим в нем коэффициент передачи по току h 21э. Вычисляем входной ток: I b = I k /h 21Э где:
I b – входной ток

R1 вычисляется по закону Ома для участка цепи: R=U e /I k где:
R – сопротивление R1
U e – напряжение питания
I k – ток полного отклонения = ток коллектора

R2 предназначен для подавления напряжения на базе. Подбирая его нужно добиться максимальной чувствительности при минимальном отклонении стрелки в отсутствии сигнала. R3 регулирует чувствительность и его сопротивление, практически, не критично.

Бывают случаи, когда сигнал требуется усилить не только по току, но и по напряжению. В этом случае схема индикатора дополняется каскадом с ОЭ. Такой индикатор применен, например, в магнитофоне "Комета 212". Его схема приведена на рис.3


Рис.3

Такие индикаторы обладают высокой чувствительностью и входным сопротивлением, следовательно, вносят минимум изменений в измеряемый сигнал. Один из способов использования ОУ – преобразователь «напряжение – ток» приведен на рис.4.


Рис.4

Такой индикатор обладает меньшим входным сопротивлением, зато весьма прост в расчетах и изготовлении. Вычислим сопротивление R1: R=U s /I max где:
R – сопротивление входного резистора
U s – Максимальный уровень сигнала
I max – ток полного отклонения

Диоды выбираются по тому же критерию, как и в других схемах.
Если уровень сигнала низок и (или) требуется высокое входное сопротивление, можно воспользоваться повторителем. Его схема приведена на рис.5.


Рис.5

Для уверенной работы диодов, выходное напряжение рекомендуется поднять до 2-3 В. Итак в расчетах отталкиваемся от выходного напряжения ОУ. Первым делом выясним нужный нам коэффициент усиления: К= U вых /U вх. Теперь вычислим резисторы R1 и R2: K=1+(R2/R1)
В выборе номиналов ограничений, казалось бы, нет, но R1 не рекомендуется ставить меньше 1кОм. Теперь вычислим R3: R=U o /I где:
R – сопротивление R3
U o – выходное напряжение ОУ
I – ток полного отклонения

2 Пиковые (светодиодные) индикаторы

2.1 Аналоговый индикатор

Пожалуй, наиболее популярный вид индикаторов в настоящее время. Начнем с простейших. На рис.6 приведена схема индикатора «сигнал/пик» на основе компаратора. Рассмотрим принцип действия. Порог срабатывания задан опорным напряжением, которое устанавливается на инвертирующем входе ОУ делителем R1R2. Когда сигнал на прямом входе превышает опорное напряжение, на выходе ОУ появляется +U п, открывается VT1 и загорается VD2. Когда сигнал ниже опорного напряжения, на выходе ОУ действует –U п. В этом случае открыт VT2 и светится VD2. Теперь рассчитаем это чудо. Начнем с компаратора. Для начала выберем напряжение срабатывания (опорное напряжение) и резистор R2 в пределах 3 – 68 кОм. Вычислим ток в источнике опорного напряжения I att =U оп /R б где:
I att – ток через R2 (током инвертирующего входа можно пренебречь)
U оп – опорное напряжение
R б – сопротивление R2


Рис.6

Теперь вычислим R1. R1=(U e -U оп)/ I att где:
U e – напряжение источника питания
U оп – опорное напряжение (напряжение срабатывания)
I att – ток через R2

Ограничительный резистор R6 подбирается по формуле R1=U e / I LED где:
R – сопротивление R6
U e – напряжение питания
I LED – прямой ток светодиода (рекомендуется выбрать в пределах 5 – 15 мА)
Компенсирующие резисторы R4, R5 выбираются по справочнику и соответствуют минимальному сопротивлению нагрузки для выбранного ОУ.

Начнем с индикатора предельного уровня с одним светодиодом (рис.7 ). В основе этого индикатора лежит триггер Шмитта. Как известно триггер Шмитта обладает некоторым гистерезисом т.е. порог срабатывания отличается от порога отпускания. Разность этих порогов (ширина петли гистерезиса) определяется отношением R2 к R1 т.к. триггер Шмитта представляет собой усилитель с положительной обратной связью. Ограничительный резистор R4 вычисляется по тому же принципу, что и в предыдущей схеме. Ограничительный резистор в цепи базы рассчитывается исходя из нагрузочной способности ЛЭ. Для КМОП (рекомендуется именно КМОП-логика) выходной ток составляет примерно 1,5 мА. Для начала вычислим входной ток транзисторного каскада: I b =I LED /h 21Э где:


Рис.7

I b – входной ток транзисторного каскада
I LED – прямой ток светодиода (рекомендуется выставить 5 – 15 мА)
h 21Э – коэффициент передачи тока

Если входной ток не превышает нагрузочную способность ЛЭ можно обойтись без R3, в противном случае его можно рассчитать по формуле: R=(E/I b)-Z где:
R – R3
E – напряжение питания
I b – входной ток
Z – входное сопротивление каскада

Для измерения сигнала «столбиком» можно собрать многоуровневый индикатор (рис.8 ). Такой индикатор прост, но его чувствительность мала и годится только для измерения сигналов от 3-х вольт и выше. Пороги срабатывания ЛЭ устанавливаются подстроечными резисторами. В индикаторе использованы элементы ТТЛ, в случае применения КМОП, на выходе каждого ЛЭ следует установить усилительный каскад.


Рис.8

Наиболее простой вариант изготовления оных. Некоторые схемы приведены на рис.9


Рис.9

Так же можно использовать и другие усилители индикации. Схемы включения к ним можно спросить в магазине или у Яндекса.

3. Пиковые (люминесцентные) индикаторы

В свое время применялись в отечественной технике, сейчас широко применяются в музыкальных центрах. Такие индикаторы весьма сложны в изготовлении (включают в себя специализированные микросхемы и микроконтроллеры) и в подключении (требуют нескольких источников питания). Я не рекомендую использовать их в любительской технике.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
1.1 Простейший шкальный индикатор
VD1 Диод 1 В блокнот
R1 Резистор 1 В блокнот
PA1 Mикроамперметр 1 В блокнот
Рис.2
VT1 Транзистор 1 В блокнот
VD1 Диод 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Переменный резистор 10 кОм 1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.3
VT1, VT2 Биполярный транзистор

КТ315А

2 В блокнот
VD1 Диод

Д9Е

1 В блокнот
С1 10 мкФ 1 В блокнот
С2 Электролитический конденсатор 1 мкФ 1 В блокнот
R1 Резистор

750 Ом

1 В блокнот
R2 Резистор

6.8 кОм

1 В блокнот
R3, R5 Резистор

100 кОм

2 В блокнот
R4 Подстроечный резистор 47 кОм 1 В блокнот
R6 Резистор

22 кОм

1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.4
ОУ 1 В блокнот
Диодный мост 1 В блокнот
R1 Резистор 1 В блокнот
РА1 Mикроамперметр 1 В блокнот
Рис.5
ОУ 1 В блокнот
Диодный мост 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Резистор 1 В блокнот
PA1 Mикроамперметр 1 В блокнот
2.1 Аналоговый индикатор
Рис.6
ОУ 1 В блокнот
VT1 Транзистор N-P-N 1 В блокнот
VT2 Транзистор P-N-P 1 В блокнот
VD1 Диод 1 В блокнот
R1, R2 Резистор 2 В блокнот
R3 Подстроечный резистор 1 В блокнот
R4, R5 Резистор 2 В блокнот
R6 Резистор 1 В блокнот
HL1, VD2 Светодиод 2 В блокнот
Рис.7
DD1 Логическая ИС 1 В блокнот
VT1 Транзистор N-P-N 1 В блокнот
R1 Резистор 1 В блокнот
R2 Резистор 1 В блокнот
R3 Резистор 1 В блокнот
R4 Резистор 1 В блокнот
HL1 Светодиод 1 В блокнот
Рис.8
DD1 Логическая ИС 1 В блокнот
R1-R4 Резистор 4 В блокнот
R5-R8 Подстроечный резистор 4 В блокнот
HL1-HL4 Светодиод 4 В блокнот
Рис.9
Микросхема A277D 1 В блокнот
Электролитический конденсатор 100 мкФ 1 В блокнот
Переменный резистор 10 кОм 1 В блокнот
Резистор

1 кОм

1 В блокнот
Резистор

56 кОм

1 В блокнот
Резистор

13 кОм

1 В блокнот
Резистор

12 кОм

1 В блокнот
Светодиод 12

В УМЗЧ смотрятся красиво и стильно, вот только где их найти... Выход есть - сделаем такой измеритель, в котором роль стрелки будут выполнять светоизлучающие диоды управляемые микросхемой. LM3916 - это специальная микросхема для LED индикаторов уровня.

Схема стрелочно-светодиодного индикатора

Светодиоды подключены через разъёмы J3 - J12 (показан на схеме только один ряд светодиодов). Схема индикатора потребует двухполярный источник питания для правильной работы. Положительный потенциал питания LED линейек должен быть ниже +25 В и в сочетании с напряжением отрицательного плеа не должен превышать 36 В. Минимальный уровень вольтажа зависит от рабочего напряжения светодиодов. Например, если светодиод на 1.9 В, а у нас 7 светодиодов на один контакт, то минимальное положительное напряжение будет 7 х 1.9 В + 1.5 В (падение напряжения на LM3916) = 14,8 вольт. Зеленые светодиоды, как правило, имеют чуть выше напряжение - 2.2-2.4 В, так что +18 В будет достаточно в большинстве случаев.

Светодиодный ток определяется резистором R1_REF, и с сопротивлением 2,2 кОм будет 5 мА.
Формула для расчёта: Iled = 10 х (1.2 V / R1_REF)


В качестве двойного операционного усилителя на входе можете ставить - TL072, TL082, LM358. Выходной режим может быть установлен 3-х контактной перемычкой JP1. Максимальное входное напряжение для LM3916 имеет значение 1,2 В, и с помощью R8-R7 можно регулировать уровень входного сигнала.

Видео работы индикатора

Цвет светодиодов на ваш выбор. Тут использованы зеленые светодиоды для отрицательных уровней, желтый - 0dB и красный для положительного уровня звукового сигнала. Для этого нужны прямоугольные светодиоды. Архив с рисунками печатных плат можно .


Многие звуковоспроизводящие устройства, будь то магнитофоны или усилители конца прошлого века были оснащены стрелочным индикатором на лицевой панели. Его стрелка двигалась в такт музыке, и хоть это не имело никакого практического значения, выглядело очень красиво. Современная аппаратура, в которой на первом месте стоит компактность и высокая функциональность уже не располагает такой роскошью, как стрелочный индикатор звука. Однако стрелочную головку найти сейчас вполне реально, а значит, такой индикатор можно легко собрать своими руками.

Схема

Её основой является советская микросхема К157ДА1, двухканальный двухполупериодный выпрямитель среднего значения сигналов. Напряжение питания схемы лежит в широком диапазоне напряжений, от 12 до 16 вольт, т.к. схема содержит стабилизатор на 9 вольт (VR1 на схеме). Если использовать стабилизатор в металлическом корпусе ТО-220, то напряжение можно подавать вплоть до 30 вольт. Подстроечные резисторы R1 и R2 регулируют уровень сигнала на входе микросхемы. Схема не критична к номиналам используемых компонентов. Можно экспериментировать с ёмкостями конденсаторов С9, С10, которые влияют на плавность хода стрелки, а также с резисторами R7 и R8, которые задают время обратного хода стрелки. In L и In R на схеме подключаются к источнику звука, в качестве которого может выступать любое устройство с линейным выходом – будь то компьютер, плеер или телефон.

(cкачиваний: 223)


Сборка схемы

Плата индикатора изготавливается методом ЛУТ на кусочке текстолита размерами 30 х 50 мм. Микросхему на всякий случай стоит установить в панельку, тогда её можно будет в любой момент заменить. Плату после травления обязательно нужно залудить, тогда она будет красиво выглядеть со стороны дорожек, а сама медь не будет окисляться. В первую очередь запаиваются мелкие детали – резисторы, керамические конденсаторы, а уже затем электролитические конденсаторы, подстроечные резисторы, микросхема. В последнюю очередь припаиваются все соединительные провода. Плата содержит в себе сразу два канала и предполагает использование двух стрелочных головок – на правый и левый канал, однако можно использовать и одну стрелочную головку, тогда контакты входа и выхода для другого канала на плате можно просто оставить пустыми, как я и сделал. После установки на плату всех деталей обязательно нужно смыть весь оставшийся флюс, проверить соседние дорожки на замыкание. Для подключения платы к источнику сигнала удобнее всего использовать штекер jack 3,5. При этом, если длина проводов от платы будет большой (больше 15 см), следует использовать экранированный провод.




Стрелочная головка

Найти в продаже советские стрелочные головки сейчас не трудно, их существует множество видов, разных форм и размеров. Я использовал небольшую стрелочную головку М42008, она не занимает много места и красиво выглядит. Для этой схемы подойдёт любая головка с током полного отклонения 10-100 микроампер. Для полноты картины можно также заменить родную шкалу, проградуированную в микроамперах, на специальную звуковую, отградуированную в децибелах. Однако подключать стрелочную головку к схеме нужно не напрямую, а через подстроечный резистор номиналом 1-2 мегаома. Средний его контакт подключается к любому из крайних и подключается к плате, а оставшийся контакт подключается непосредственно к головке, как видно на фото ниже.

Настройка индикатора

Когда плата собрана, стрелочная головка подключена, можно приступать к испытаниям. В первую очередь следует, подав питание на плату, проверить напряжение на 11 выводе микросхемы, там должно быть 9 вольт. Если напряжение питания в норме, можно подавать на вход платы сигнал с источника звука. Затем, используя резисторы R1 и R2 на плате и подстроечный резистор у стрелочной головке добиться нужной чувствительности, чтобы стрелка на зашкаливала, а находилась примерно в середине шкалы. На этом основная настройка завершена, стрелка будет плавно двигаться в такт музыке. Если хочется добиться более резкого поведения стрелки, можно установить резисторы сопротивлением 330-500 Ом параллельно стрелочным головкам. Такой индикатор будет отлично смотреться в корпусе самодельного усилителя, либо же как самостоятельное устройство, особенно если подсветить индикатор парой светодиодов. Удачной сборки!

При разборе хлама в шкафу я случайно нашел свою прошлогоднюю (осень 2013-го) поделку — стрелочный индикатор уровня звука на микросхеме К157УД2. Почему-то тогда она у меня работать не захотела, и я ее забросил куда подальше. А сейчас решил окончательно разобраться — в чем же дело? Ведь сделанный тем же летом первый экземпляр устройства до сих пор исправно работает.
Статья, в которой описывается схема усилителя на микросхеме, находится , вариант 2, «Схема с однополярным питанием». Там же можно посмотреть цоколевку микросхемы К157УД2. Я же прилагаю схему со своими номиналами, главной частью которой является индикатор М68501 и его обвязка.

Сразу замечу, что ее можно подключать как на выход усилителя звука, так и на вход . В первом случае стрелочный индикатор будет показывать мощность выходного сигнала (и, соответственно, при уменьшении громкости регулятором стрелка будет «падать»), а во втором — мощность входного, что иногда бывает полезнее (например, визуально контролировать мощность подводимого сигнала, так как если ее приходит слишком много, то сигнал может начать искажаться). В схеме некоторые номера ножек микросхемы указаны в скобках — это значит, что можно собрать два идентичных усилителя на одной микросхеме, и, соответственно, подключить два индикатора: на правый и левый канал (или на вход и выход усилителя).
Оказалось, что пушки не стреляли по двадцати причинам, и первая из них — не было снарядов. А если говорить о микросхеме, то с ее питанием были серьезные проблемы. Так же пришлось заменить оба электролитических конденсатора (в те времена я еще не закупал их ведрами, поэтому поставил откуда-то вытащенные), разобраться с отпадающей ногой конденсатора 22 нФ и правильно подключить его. После этого схема заработала, хотя я еще не знаю, куда ее можно приспособить.
Диоды — Д311. Чуть хуже будут Д18.
Резистор R5 подстроечный и со «звездочкой» — это значит, что мало того, что его придется подкрутить под уровень сигнала (чтобы, например, при нормальной громкости усилителя стрелка болталась в районе 75% от шкалы), так еще не факт, что 47 кОм подойдет для всех случаев.
Если увеличить номинал резистора R4 (470 — 910k), то можно поднять коэффициент усиления микросхемы и заставить ее «чувствовать» более слабые сигналы (это как раз пригодится, если индикатор подключать ко входу усилителя звука). Например, мне для наблюдения выхода звука с плеера пришлось установить резистор в 1 МОм.
Немного фотографий моей схемы:





И демонстрация работы, когда производится наблюдение за выходом «ВЭФ 216»:

Особенностью схемы является невысокая чувствительность к высокочастотным сигналам (стрелка с бОльшим удовольствием приходит в движение от барабанов и бас-гитары, нежели от голоса и гитарных соло).
А на ночь глядя я встроил в корпус индикатора два синих пятимиллиметровых светодиода. Нормально светят от пяти вольт, если меньше — то работает только один, второй оказался подгоревшим. Для совместимости с другими питающими напряжениями подсветка включена через подстроечный резистор 500 Ом — можно легко запитывать всю схему от 5 — 9 вольт, надо только подкорректировать напряжение.